
polyglot
persistency
an adaptive data layer
for digital systems

03 Executive summary

04 Why NoSQL databases?

05 Persistence store families

06 Assessing NoSQL technologies

10 Polyglot persistency in amdocs digital

14 About Amdocs

table of
contents

3

executive
summary

The digital era has changed the way users consume
software. They want to access it from everywhere, at any
time, get all the capabilities they need in one place, and
complete transactions with a single click of a button.

To meet these high standards, enterprises embrace
cloud principles and tools that will allow them to be
geographically distributed, intensely transactional, and
continuously available.

Furthermore, they understand that their software must
be architected to be agile, distributed and broken up
into independent, loosely coupled services, also known as
microservices.

To properly serve such demand, the underlying data layer
must adapt from what has been used for the past three
decades into a new adaptive data infrastructure capable
of handling the multiple types of data models that exist in
the modern application design, and providing an optimal
persistence method – also called polyglot persistence.

A polyglot is “someone who speaks or writes several
languages”. Neal Ford first introduced the term ’polyglot
persistence’ in 2006 to express the idea that NoSQL
applications would, by their nature, require differing
persistence stores based on the type of data and access
needs.

This paper introduces the concept of polyglot persistence
along with the guidelines that can be utilized to map
various application use-cases to the appropriate
persistence family. The document also provides examples
of how Amdocs Digital is leveraging different persistence
technologies to better serve the needs of our digital
service providers.

4

These characteristics, shared among all NoSQL
databases, are what allows much greater scalability and
handling of the varied data sources and their volume and
the required applicative workloads.

The scale cube

Operating at scale requires rethinking how the database
is utilized with the application and consideration of
the scaling properties of that database. In The Art of
Scalability (Martin L. Abbott & Michael T. Fisher), the
authors explain that, as a system scales to accommodate
various workloads and volumes, the system is divided
into smaller functional units (functional decomposition,
Y-axis). It is also deployed over many nodes (X-axis).
Finally, the data scaling is handled by combinations of
sharding and the persistence store (Z-axis). Scaling data
is as important as scaling the application tier; the various
persistence store families offer options for this scaling,
some of which are included in the architecture of the
store itself, while others require architecture patterns
such as sharding.

why NoSQL
databases?

SQL databases (also called relational database
management system) have ruled for three decades and
were the standard for running data and transactional
processes.

But things have changed, and the RDBMS technology can
no longer meet the velocity, volume and variety of data
being created and consumed.

This applied not only to so-called digital companies like
amazon and google, but also to enterprise organizations
in telco, finance and other domains, as they started to
face the need to find a better solution for their growing
data problem. The data grew exponentially, beyond one
server, and started to become very expensive to maintain
in such a way that the required performance and
availability was met.

And this is when, early in the 2000s, NoSQL or Not-Only-
SQL databases were introduced.

There is no formal definition of NoSQL; however, some
characteristics are common to all NoSQL databases:

 · They do not use the relational data model;

 · They tend to be designed to run on a cluster (in a
distributed environment;

 · They tend to be Open Source;

 · They do not have a fixed schema, allowing the storage
of any data in any record

Y axis -
Functional
decomposition
Scale by splitting
differing things

X axis -
Horizontal duplication
Scale by cloning

Z axis
-

Dat
a p

ar
tit

ioning

Sca
le by sp

lit
tin

g

sim
ilia

r t
hings

5

persistence
store families

DESCRIPTION DIAGRAM EXAMPLES

Key-value (KV) stores are the simplest.
Each database item is stored as a Key (an attribute name)
together with an associated value.

 · Redis

 · Memcached

Column-Family stores store data together as columns instead
of rows and are optimized for queries over large data sets.

 · Cassandra

 · HBase

Document databases pair each key with a complex data
structure known as a document.

Documents can contain many different key-value pairs, or key-
array pairs, or even nested documents.

 · MongoDB

 · Couchbase

Graph databases are used to store information about
networks, such as social connections.

 · Neo4J

 · OrientDB

Relational database are used to store information in a
relationship model.

 · MySQL

 · PostgreSQL

Search datastore enables full text scans of large data sets and
access by online applications

 · Elastic Search

6

Some of the persistence store families have unique
capabilities making it easier to match a family to the
application use case:

Transient data using in-memory key-value stores is a
common use case that requires a NoSQL technology
optimized for read-heavy application workloads or
compute-intensive workloads, where the data in this data
store is assumed to be volatile and not persisted to disk.

Graph data stores are also oriented to specific cases:
those where connection between data entities is required
– such as fraud detection, real-time recommendations
and master-data management.

Search data stores are used when we need to perform
activities like full-text scans on a large data set.

assessing NoSQL
technologies

There are a wide range of persistence store families in the
NoSQL ecosystem, and each family has many options to
choose from. The diversity and vibrant community is an
asset; however, we must consider the implications of the
persistence stores that are relevant for DSPs and their
specific requirements and business applications.

Selecting a persistence store family

The right time for us to select the most appropriate
persistence store is during the architectural phase of
application planning, , To make this selection, we need
to consider not only the needs of the specific component
being created but also how that component interacts
with the broader application and application ecosystem.
As a first step in this process, we match the needs of the
component to the capabilities of the persistence store
This section explains the major criteria we need to satisfy
in when making such a decision; It is recommended to
ensure that persistence store family selection is adequate
for all of the application’s needs.

7

Partition Tolerance is the property of a distributed
system in which the system continues to operate even if
there is a networking issue that prevents some part of
the system from talking with the others.

Again, think of our online shopping application. Partition
tolerance states that we should have access to our
system even if some nodes are not reachable due to a
network partition issue.

However, the nature of a distributed system requires
it to tolerate network partitioning; thus, in the case of
a network outage, the system needs to favor either
availability – by retrieving the most recently available
value without guaranteeing that it is up-to-date – or
consistency – by returning an error or timeout. Of course,
under normal operation of the system, consistency and
availability can both be achieved.

Note 1: The consistency described in this context is
different from the traditional ACID term (Atomicity,
Consistency, Isolation, Durability) which was known in
the RDBMS transactional mechanism. The alternative
approach for distributed systems was proposed by
Brewer to be BASE (Basic Availability, Soft-state,
Eventual consistency) and many of the NoSQL
technologies favor availability and eventual consistency.

Note 2: It is important to know that many of the leading
NoSQL technologies on the market do provide different
configurations to control the level of consistency, and
hence can be tuned to favor availability or consistency,
based on the application needs.

CAP theorem –
the consistency vs. availability dilemma

Distributed systems of applications often require us to
consider the common pitfalls of distributed computing:
Consistency, Availability, and Partition Tolerance, as
described in the CAP Theorem coined by computer
scientist Eric Brewer.

Consistency is a property of a distributed system in
which every read receives the most recent write or an
error (also known as ready-after-write). In other words,
in a distributed system, when I read from it, I will always
see what I have most recently written. I should always be
getting the most recent update that I wrote.

As an example of consistency, think of an online
shopping application. What consistency states is that,
in the shopping cart, I should always be getting the
previously added items: the shopping cart itself has to be
consistent.

Availability is the property of a distributed system in
which every request receives a response even without
guaranteeing that it contains the most recent write. In
simple terms: when I ask, I should always get an answer.
When I try to write, I should write. When I try to read, I
should read. The system shouldn’t tell me “Sorry! Come
back later”.

As an example, again think of our online shopping
application. In this case, I should always access my
shopping cart immediately, regardless of its consistency.

AP: Always available even in a
partition, but may be inconsistent

A P

C

CA
: C

on
sis

te
nt

 a
nd

 a
va

ila
bl

e,

if
th

er
e

is
no

 p
ar

tit
io

n

CP: Alw
ays consistent even in a

partition, but m
ay be unavailable

“Of three properties of shared-data systems
(Consistency, Availability and tolerance
to network Partitions) only two can be
achieved at any given moment in time.”

-Eric Brewer

8

structure to accommodate the dynamic changes in the
application.

A schemaless database allows any data, structured
with individual fields and structures, to be stored in the
database.

However, in reality, the application still needs to be
familiar with the stored structures in order to effectively
consume and manipulate the data.

The different types of persistent store families determine
the implementation of how data is structured in
the database, with differences between the main
alternatives of Key-value, Document and Column Family:

 · Key-value, being the simplest structure, also provides
the highest flexibility in terms of schema, yet limits the
use of complex queries. Typically, the key-value stores
are used for simple transient data and in-memory
stores.

 · Document essentially expands the basic idea of
Key-Value, allowing far better use of complex data
structures.

 · Column Family varies between almost schemaless
design (e.g. Hbase) and more strict schemas (e.g.
Cassandra), to better support complex queries.

Big data

A key factor in choosing the optimal data technology is
related to the volume of data required to be handled by
the persistency layer. Often, it is also coupled with the
type of queries and workload needed on the data. The
nature of these workloads is in their write velocity and the
volumes needed to build large data lakes storing hundreds
of terabytes of data.

Typical use of the big data stores is to run large scans
of data for analytical type of workloads. In many cases
part of the data needs to be available to SQL columnar
databases (e.g. HP Vertica), in order to allow complex
slice-and-dice queries.

Read vs. write

An important factor for choosing the right NoSQL
technology is to understand the nature of the workloads
required by the application from the persistent store. The
most basic characteristic of this is whether the workload
is read- or write-intensive: in other words, whether the
persistent store should have better performance for read
or write operations.

The details of how each of the different NoSQL
databases stores its data are different. There are two
main themes:

 · Log-structured merge (LSM) tree files that require
compaction (which involves reducing disk space
through the deletion of old and unused data from the
database);

 · Checkpoint writes of data tables.

The LSM-tree-based databases present excellent write
and update performance, while the checkpoint databases
can offer consistently better read performance.
Compaction also causes the system to see a spike in both
disk usage and I/O activity. This sort of activity must
be planned for, as this can adversely affect speed and
performance.

Some of the NoSQL technologies offer the use of multiple
storage engines to choose from in order to be versatile
enough to support different workloads.

It is also important to relate to the nature of the
performance of the NoSQL technology, specifically
the profile of the read or write ability to be stable and
predictive for critical operational workloads. It is likely that
each data technology will shine in a particular use case
and therefore it is important to test the specific workload
to ensure that it will meet the application performance
SLA.

Schemaless Data

An important factor for choosing the right NoSQL One of
the biggest changes in moving to NoSQL was the notion
of Schemaless data. In the old relational world, we had
to carefully model the data into well-defined structures
of table and columns before being able to use the data
store; this made it extremely difficult to evolve the

9

 · Technology stack – In some cases it is wiser to select
a data technology that provides better alignment
with other parts of the system. For example: having
the document store and the column family store of a
specific application come from the same vendor allows
operational aspects of the application deployment to
be streamlined and more cost-effective.

 · Commercial support – While NoSQL is mostly open-
source, enterprise-oriented applications and systems
which are serving large scale and critical workloads will
need to be backed by solid commercial support.

NoSQL in the enterprise eco system

In previous selection factors, the focus was mainly on how
to optimize the selection of the data technology based on
the profile and nature of the application workloads and
use case.

The market includes dozens of data technologies for
each persistent store family, and many data technology
companies are striving to propose versatile platforms
that can handle multiple workloads and use cases and
can also be tuned and configured to be optimized for the
relevant task.

It is therefore as important to factor and evaluate the
data technology in the context of the wider ecosystem of
the software technology stack used in the overall system
of applications. The following are some recommended
considerations:

 · Developer-friendly – The data technology should
provide a rich set of APIs and auxiliary tools in order to
avoid the need for the developer to focus on adding
new capabilities to the data store, rather than the
business application.

10

polyglot
persistency
in amdocs digital

The following are case studies of implementations of
polyglot persistency technologies in Amdocs Digital.

DigitalONE commerce

Amdocs DigitalONE is a new, end-to-end, digital
enablement platform that covers the full lifecycle of telco
care and commerce processes.

It is cloud-native, open, and developed and deployed using
CI/CD, based –on Amdocs Microservies360 framework.
This enables easily offering new and innovative digital
services, as well as creating new features and capabilities,
faster than ever before.

As part of DigitalONE, the commerce business processes
has been completely modernized using a microservices
architecture. The following example is related to the order
capture process, in which several microservices handle the
main digital commerce process for the communication
and media service providers.

Product
Ordering

Checkout
Shopping Cart MS

Message HUB

Validate
Shopping Cart MS

Shopping Cart
MS

get shopping
cart (#01)

validate shopping
cart (#01)

checkOutShoppingCart place order

Event

Sync Call

Domain MS

External Domain

create
order (#3)

Shopping Cart Domain Example

11

 · The following points were considered when choosing
the optimal persistency technology for the commerce
microservices: The appropriate persistence store family
was determined to be Document because of the need
to support hierarchical structures and maintain strong
consistency of each of the document CRUD (create,
read, update, delete) operations. Furthermore, the
document store allows SQL-like queries within the
documents, which was also essential for the commerce
application business process and UI.

 · The schemaless nature of the datastore was key to
supporting the business agility of frequent changes in

the commerce catalog and business logic without the
need to worry about data migrations, and software
upgrades.

 · Scalability and performance of supporting Amdocs
DigitalONE customers is of the highest concern and
therefore multiple technologies were tested to provide
the optimal benchmark for the specific commerce
business process.

 · Couchbase was selected as the main document
persistence store technology based on the above
considerations, while also taking into account
additional aspects of the broader software eco-system
and commercial factors.

large volumes of data which stream from the operational
system and then transform them into an integrated data
model which can be consumed by several applications,
primarily for actionable analytics.

Amdocs Data Hub

Amdocs Data Hub is a big data solution, oriented to
provide an operational data store for the business
support systems and network-related data for the digital
service provider. Data Hub needs to handle extremely

Data
Publishing

Engine

HDFS
Integration

Real Time
Publisher

Aggregation /
Rollup
Engine

Hive

SQL - Hive / ImpalaOnline Application

Customer Profile

Summary Layer

Detailed Layer
Hive

Spark

Spark

Pig

Pig
HDFS (Columnar)

ALDM
Scheme

Source
Scheme

Search

12

Persistency stores that are used:

1. Hbase is used to store data from source systems as
the Real Time Publisher performs complex real-time data
transformations and normalization.

2. The normalized data is then stored in an HDFS-based
data store supported by columnar file format (Apache
ORC or Parquet), in order to allow analytical workload
and SQL access to the data.

Each dimension, as illustrated in the following diagram,
imposes a different set of requirements and therefore
uses different data technologies, as described below.

Amdocs Convergent Charging

Real time convergent charging is a platform that requires
to manage payments and charges for subscriber’s usage
and consumption of network services. Furthermore, due
to regulation, all the data which was processed should be
stored for variable time periods which may rise to a few
years, in order to utilize this data it also kept for analytics.

3. A subset of data is loaded into an Elastic data store to
support online queries and full-text search.

It is interesting to note that the use of Hbase made it
possible to have the entire process run on Hadoop-based
data technology (such as Cloudera or Hortonworks),
thereby streamlining the solution to enable operational
efficiency and cost reduction. From the workload
perspective, other technologies like Cassandra or
Couchbase might also be relevant.

Runtime Data Management

Real-Time Rating &
Event Processing

DRAAmdocs Online
Charging Adapter

Amdocs Service
Control

Amdocs Offline
Charging Adapter

Account &
Balance Management Customer DataUsage Data

Amdocs Convergent Charging

IMS CoreMobile / WirelessFixed-line

Proprietary WS FilesIN SIP
 (e.g. CAP)

Ro / Gy

GGSN / P-GW

SMS-C MMS-C
CSCFCMTS

MSC
ASBRAS

13

Persistency stores that are used:

 · Geode is used for usage charging

In order to charge usage, the charging system is
integrated to the network and charges events in real
time; therefore two key capabilities are essential: low
latency response and high availability.

Apache Geode is a data management platform
that provides real-time, consistent access to data-
intensive applications throughout widely distributed
cloud architectures. Build high-speed, data-intensive
applications that elastically meet performance
requirements at any scale.

Take advantage of Apache Geode’s unique technology
that blends advanced techniques for data replication,
partitioning and distributed processing. Apache Geode
provides a database-like consistency model, reliable
transaction processing and a shared-nothing architecture
to maintain very low latency performance with high
concurrency processing.

As discussed before, usage charging requirements impose
low latency for high volumes of events. During the POC
that was conducted in Amdocs labs, Geode (GemFire at
that time), outperformed its competitors, demonstrating
high performance both for reading and updating values.

 · PostgreSQL is used for Subscriber Management

In order to charge each subscriber according to its price
plan, charging systems need to store the subscriber’s
profile. Subscriber’s profile is complex to store and
normally it includes many parameters which may be
stored in several tables and often requires joining tables,
in order to be presented.

PostgreSQL is a powerful, open source object-relational
database system. It has more than 15 years of active
development and a proven architecture that has earned
it a strong reputation for reliability, data integrity, and
correctness. It is fully ACID compliant, has full support
for foreign keys, joins, views, triggers, and stored
procedures (in multiple languages). It includes most SQL
data types, including INTEGER, NUMERIC, BOOLEAN,
CHAR, VARCHAR, DATE, INTERVAL, and TIMESTAMP. It
also supports storage of binary large objects, including
pictures, sounds, or video. It is highly scalable both in the
sheer quantity of data it can manage and in the number
of concurrent users it can accommodate.

One of the main driver to choose PortgreSQL in this case
was the migration process. The process to migrate live
systems from Oracle to PortgreSQL was the easiest;
PostgreSQL has the most comprehensive solution, which
meets almost all the requirements for this domain.

 · HBase is used for storage and analytics.

After the charged events have been processed, there
is a need to store them, sometimes even up to a year.
Therefore, there is a need to store large amounts of data,
and in such a way that it can be accessed easily. Due
to its extent and granularity, this data is also used for
various analytics use cases.

Hbase also provided strong consistency per row operation
for persisting the charge events.

HBase combines the scalability of Hadoop by running on
the Hadoop Distributed File System (HDFS), with real-
time data access as a key/value store and the analytic
capabilities of Map Reduce. Due to the nature of the
charging transactions, there was also a strong need
ensure the data consistency.

Copyright © Amdocs 2017. All Rights Reserved. Reproduction or distribution other than for intended purposes is prohibited, without the prior written
consent of Amdocs. Amdocs reserves the right to revise this document and to make changes in the content from time to time without notice.
Amdocs may make improvements and/or changes to the product(s) and/or programs described in this document any time.

The trademarks and service marks of Amdocs, including the Amdocs mark and logo, Ensemble, Enabler, Clarify, Return on Relationship, Intelecable,
Collabrent, Intentional Customer Experience, Cramer and Qpass are the exclusive property of Amdocs, and may not be used without permission. All
other marks are the property of their respective owners.

© 2017 Amdocs. All rights reserved.

www.amdocs.com

visit our website

about
amdocs
Amdocs is a leading software & services provider to the
world’s most successful communications and media
companies. As our customers reinvent themselves,
we enable their digital and network transformation
through innovative solutions, delivery expertise
and intelligent operations. Amdocs and its 25,000
employees serve customers in over 85 countries. Listed
on the NASDAQ Global Select Market, Amdocs had
revenue of $3.7 billion in fiscal 2016.

https://www.amdocs.com/digital-experience/aia-smartbot

